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In this document we present the numerical results shown in the article “Estimation after blinded sample
size reassessment” as well as additional results that - for the sake of brevity - have not been included in the
main article. Written in Rmarkdown this document serves both as supplementary material to the article but
also as a program that permits a complete reproduction of all numerical results and graphical presentations
of the results. This document is distributed as a vignette to the r-package blindConfidence. Therefore, all
results shown in the paper as well as in this document can be replicated by compiling the corresponding
source file in the package. Simply compiling the document - as happens on installation of the package - will
recompute all figures using stored simulation results. To rerun the simulations the corresponding R chunks
can be reconfigured by setting eval=TRUE so that they will be evaluated on compilation. Note that this may
take a very long time and require a considerable amount of main memory. Computation of the publication
results took over two weeks on a simulation server with 40 processor cores and 64 GB of shared memory.
Note that the code has been optimized to run on Linux, so while the package should work fine on Windows
in theory, it has not been tested.

In Section 1 we outline the setup and reproduce the results of the simulation study presented in Section 4 of
the article. Additionally in Section 2 of this document show simulation results concerning the inflation of
the non-coverage for the adjusted sample size rule, and the (squared) standard error of the mean estimate.
In Section 3 we investigate the maximum absolute bias of the variance and mean estimates for given first
stage sample sizes, as well as the maximum of the Type I error of the t-test following blinded sample size
reassesment. In Section 4 we reproduce the simulations shown in the case study of our paper. In Section 5
we present a simulation study investigating the bias and coverage probabilities of estimaten and confidence
intervals following blinded sample size reassessment when the second stage sample size is restricted to not
exceed twice the preplanned second stage sample size (which in our example is equal to the first-stage sample
size).

In this document we present 22 Figures (15 of which are not shown in the Article) which take up considerable
space. To keep the text readable, we have pushed all figures to the end of document. The following table
gives an index of which Figures in the original paper correspond to which in this document. Note that Figure
4 in the article combines three figures from this document into one panel.

Article.Figure Supplementary.Figure
Figure 1 Figure 3
Figure 2 Figure 4
Figure 3 Figure 2
Figure 4 Figure 7, 13, 14
Figure 5 Figure 16

1. Coverage probabilities and bias of the mean and variance esti-
mates

In a first simulation study we investigated the coverage probabilities of conventional t-test confidence intervals
following blinded interim analysis, as well as the bias of the estimates of the mean and variance. The second
stage sample size was computed based on the blinded first stage data using either the adjusted

1



na2(S2
1,OS) = min

{
n2max,max

{
n2 min, 2(z1−α + z1−β)2

(
S2

1,OS

δ2
0
− n1

4n1 − 2

)
− n1 + 1

}}
.

or the unadjusted

nu2 (S2
1,OS) = min

{
n2max,max

{
n2 min, 2(z1−α + z1−β)2S

2
1,OS

δ2
0
− n1 + 1

}}
,

reassessment rules.

To optimize the computational efficiency of the simulation algorithm, the joint distribution of the stage-
wise t-statistics was simulated by sampling the stage-wise means and sample variances from independent
normal and chi-squared distributions (instead of sampling individual observations). After submission of our
manuscript we became aware of a paper by Lu (2016) on sample size reassessment for non-inferiority trials,
where the same approach is proposed.

We assume that the preplanned sample size of the trial was planned to reach a target power of 80% (using
the normal approximation) assuming an effect size δ0 = 1, standard deviations σ0 between 0.5 and 2 in steps
of .5 and a one-sided significance level α = 0.025. The first stage sample size n1 was set to halve of the
preplanned sample size. For this simulation the maximum and minimum second stage sample sizes where not
restricted (i.e. n2max =∞, n2 min = 0)The simulations were performed in R with 5 ∗ 107 simulation runs per
scenario. The data used in the final manuscript version, is distributed with this package and can be loaded
with the command data(gridsim).

Difference between actual and nominal coverage probabilities

In Figure 1 we plot how far the coverage probabilities of one and two-sided confidence intervals deviate from
their nominal coverage if sample sizes are reassessed using the adjusted variance estimator. In Figure 2 we
show the difference between actual and nominal coverage probabilities, for designs that use the unadjusted
lumped variance at interim for sample size reassessment (i.e. nu2 ).

Bias of the effect size estimate

Next we look at estimates of the mean difference between treatment groups. In Figure 3 solid lines show
the bias in the mean estimate for designs where sample sizes are adjusted based on the adjusted interim
variance estimate (na2), dashed lines for designs where sample sizes are adjusted based on the unadjusted
interim variance estimate (nu2 ). The dotted lines show the bounds for the bias of the mean estimate that can
be attained under any (blinded) samplesize reassessment rule.

Bias of the variance estimate

In Figure 4 we show the bias when estimating the variance at the end of the adapted trial. Solid lines show
the bias of the variance estimate for designs where sample sizes are adjusted based on the adjusted interim
variance estimate (na2), dashed lines for designs where sample sizes are adjusted based on the unadjusted
interim variance estimate (nu2 ). The dotted lines show the bias of the mean estimate using the samplesize
reassessment that maximizes the negative or positive bias, respectively.
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Estimates of the variance of the mean estimate (squared standard error)

To compare the actual variance of the mean to the estimated variance, we computed for each simulated
trial the variance estimate Ŝ2

e = 2S2

n1+n2
as well as the actual variance σ2

f = 2σ2

n1+n2
of a design with fixed

sample sizes n1, n2 (thus, ignoring that n2 is dependent on the first stage sample). Both quantities were then
averaged over the Monte-Carlo samples. Finally, we compute the variance of the mean estimate across all
Monte Carlo samples, which is an unbiased estimate of the true variance of the mean (σ2

e). The results show
that the true variance of the mean estimate of an adaptive design with blinded sample size reassessment
is smaller than the average variance of a fixed sample design with the same sample sizes. The bias of the
estimate of the variance of the mean estimate is close to zero around the null hypothesis. This holds both for
designs using the adjusted and unadjusted interim variance estimates to reassess the sample size and gives
some intuition why there is no relevant inflation of the coverage probability of confidence intervals under the
null hypotheses, even though the variance estimate has a considerable negative bias. We show Ŝ2

e , σ2
e and σ2

f

for trials using the adjusted (Figure 5) and the adjusted sample size reassessment rules (Figure 6).

2. Maximum bias of the mean estimate and worst case inflation of
the non-coverage

We also maximize the different absolute bias of mean and variance estimates as well as the (absolute)
difference between actual and nominal coverage probabilities over δ and σ, for fixed first stage sample sizes.
As the different quantities can only be evaluated with some simulation error, we implemented a three-stage
optimization procedure.

1. We evaluate bias, and coverage probabilities using an initial simulation, for all per group first stage
sample sizes between 2 and 50 over grid of parameter values δ ∈ [0, 4] and σ ∈ [.5, 4] in steps of .1.

2. For each first stage sample size and quantity (mean bias, variance bias, actual - nominal coverage
probabily) we identify the maximizing parameter settings based on the results of the simulation study
in step one. We add additional candidate scenarios in the vicinity of each of the identified parameter
settings (in a resolution that is higher then the grid in step 1) and perform another set of simulations
(using an increased number of simulation runs).

3. Again, for each first stage sample size and quantity (mean bias, variance bias, actual - nominal coverage
probabily) we identify the maximizing parameter settings based on the results of the simulation study
in step two. Finally we run a last set of simulations using the identified scenarios to avoid any selection
bias.

In the Figures 7-15 we present the results from the final simulation run in Step 3. For the bias of the variance
we performed some additional simulations as our results suggested that the optimizing scenarios are given for
δ = 0 and for the undadjusted sample size rule also σ =∞.

Step 1: Simulation over a grid

We simulate adaptive trials for true differences of means between 0 and 4, true standard deviations between
.5 and 4 (both in steps of .1) and per group first stage sample sizes between 2 and 50. For each scenario we
performed 106 simulation runs. Steps 2 and 3 of the maximizing procedure were then performed for each
quantity seperately.

Step 2 and 3: Maximum bias of the mean for given n1

To improve our estimate of the maximum bias of the mean estimate we refine the grid around the optima
found in the simulation performed in Step 1 runs by adding points every .01 in a cubic vicinity - with a width
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of .1 - of the maximizing δ and σ and simulate again using 4 ∗ 106 runs. We select the parameter values
leading to the maximal bias and resimulate using 107 runs to remove any selection bias. The results for the
maximum bias of the mean estimate are shown in Figure 7

Step 2 and 3: Maximum bias of the variance estimate

To improve our estimate of the maximum bias of the variance estimate we refine the grid around the optima
found in the simulation performed in Step 1 runs by adding points every .01 in a cubic vicinity - with a width
of .1 - of the maximizing δ and σ and simulate again using 4 ∗ 106 runs. We select the parameter values
leading to the maximal bias and resimulate using 107 runs to remove any selection bias. The results of this
simulation can be seen in Figure 13.
It appears that the absolute bias of the variance estimate (using both sample size rules) is maximised for
δ = 0. Above figure shows that in the simulation study the maximum is consistenly attained for δ close to
zero. Also for the unadjusted reassessment rule, values of σ that maximise the absolute variance bias are
consistently found at the upper border of the simulation grid. It appears that the maximum is obtained for
large values of σ. Consequently we additionally ran the following simulations:

1. Maximize the absolute variance bias using a fixed value of δ = 0, and values of σ ranging from 0.5 to 4
2. Estimate the absolute variance using simulations setting δ = 0 and σ = 4 (i.e. at the border of the

chosen parameter grid)
3. Estimate the absolute variance using simulations setting δ = 0 and σ = 50 (i.e. approaching infinity)

Comparison of simulated optima for the unadjusted reassessment rule
In Figure 9 we compare the maximum of the absolute variance bias among scenarios where δ = 0 is fixed to
the maximum absolute bias among scenarios where δ was allowed to range from 0 to 4. It seems that the
difference in the bias curves is due only to Monte Carlo error. We therefore conclude that the maximum is
attained at δ = 0.
In Figure 10 we compare the maximum of the absolute variance bias over scenarios where σ may range
betwenn .5 and 4, where σ = 4 is fixed, and where σ is set to 50. We observe that - especially for smaller
sample sizes - the absolute bias for scenarios with σ = 50 exceeds the maximum found for scenarios with
σ ≤ 4. The difference is consistent across different first stage sample sizes. Also, fixing σ = 4 does not result
in a decrease of the absolute bias compared to settings where σ may range between .5 and 4 - but rather in a
small but consistent increase1. In consequence we conclude that the maximum absolute bias of the variance
(using the unadjusted sample size reassessment rule) is increasing in σ. In the remainder we will use σ = 4,
which even though not optimal (in terms of maximising the bias) compared to σ = 50 (or even larger values)
reflects a value that may be of practical relevance.

Comparison of simulated optima for the adjusted reassessment rule
Similar to the unadjusted sample size reassessment rule, the results shown in Figure 11 suggest that the
difference between the maximum absolute variance bias found for scenarios where δ = 0 fixed, and scenarios
where δ was allowed to range from 0 to 4 is due only to Monte Carlo error. We therefore conclude that the
maximum is attained at δ = 0.
In Figure 12, we show that, for the adjusted sample size rule, setting δ = 0 and σ = 50 decreases the absolute
variance bias compared to the maximum values found when δ = 0 and σ ranged from .5 to 4; and also, that
setting σ = 4 does decrease the bias compared to the maximum values found when δ = 0 and σ ranged from
.5 to 4, but not as much as for σ = 50. The differences are consistent across different first stage sample
sizes and appear larger than the Monte Carlo Error. We therefore conclude that the the (absolute) bias is
maximized for values of σ lying within the parameter grid.

1This may seem as surprising as the σ = 4 is included in the scenario where σ is not fixed. However, if the local optimum is
attained at σ = 4 optimizing over a range of values is likely to select a different (suboptimal) value due to Monte Carlo error,
thus resulting in a smaller estimate of the maximum (absolute) bias.
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Final results included in the paper

Based on above results we concluded to present the results that show the maximum absolute variance bias
for δ = 0 and σ ranging from .5 to 4 - when using the adjusted sample size rule; and δ = 0 and σ = 4 - when
using the unadjusted sample size rule. Even though not a global maximum we opted for the latter scenario as
it reflects the maximum absolute variance bias within a range of parameters that seem of practical concern.
The corresponding results are shown in Figure 13.

Step 2 and 3: Maximum difference between nominal and actual coverage probability

To improve our estimate of the absolute difference between nominal and actual coverage probability we refine
the grid around the optima found in the simulation performed in Step 1 runs by adding points every .005
in a cubic vicinity - with a width of .4 - of the maximizing δ and σ and simulate again using 4 ∗ 106 runs.
We select the parameter values leading to the maximal bias and resimulate using 107 runs to remove any
selection bias. The results of this simulation can be seen in Figure 14.

Maximimizing the inflation of the non-coverage probability under the Null

We also performed a simulation based optimization of the inflation of the non-coverage probability under the
null hypotheses (i.e. δ = 0). This corresponds to the inflation of the Type I error rate of the associated test
procedure. The results show that there is minor inflation of the Type I error rate for first stage per group
sample sizes below 10 (.5 to .01 percentage points). For larger sample sizes the inflation is less than the
simulation error. See Figure 15 for the corresponding results.

3. Case Study

As an example Kieser and Friede (2003) present the trial reported in Malsch and Kieser (2001), which is
a randomized placebo controlled trial of the efficacy of the kava-kava special extract “WSő 1490” for the
treatment of anxiety. The primary endpoint of the study was the change in the Hamilton Anxiety Scale
(HAMA) between baseline and end of treatment. Assuming a mean difference between treatment and control
of δ0 = 5.5 and standard deviation of σ0 = 8 (i.e. a variance of σ2

0 = 64) results in a sample size of 34 patients
per group to provide a power of 80%.

Kieser and Friede (2003) assume that sample size reassessment based on blinded data is performed after 15
patients per group and consider that the interim estimate of the standard deviation is S1,OS = 6 and adjusting
for δ0 = 5.5 gives S1,OS,δ0 = 5.3. The corresponding updated sample sizes are then given by nu2 = 4.7 and
na2 = 0.6 patients (per group), respectively. Consequently, using the unadjusted sample size rule 5 patients
per group would have been recruited in the second stage; using the adjusted rule only 1 patient per group
would have been recruited in the second stage.

If the sample size reassessment is based on the unadjusted interim variance estimate S1,OS , the variance
estimate from the completed trial will be negatively biased. Theorem 4 gives a lower bound for the magnitude
of that bias which in this case is −2.07. We also performed a simulation study, similar to that of Section
4 in the paper, where we fix δ0 = 5.5, σ0 = 8 and n1 = 15 - but not S1,OS , S1,OS,δ0 - and let δ vary from
−2δ0 = −11 to 2δ0 = 11 in steps of 0.05 and σ from 1 to 20 in steps of 1. Detailed results are shown in
Figure 16 where we plot the coverage of the confidence intervals and biases of the mean, and the variance
estimate. The variance bias gets as low as −2.06 if the true mean effect is δ = −0.82 and the true standard
deviation σ = 19 (i.e. it reaches the theoretical boundary within simulation error). For smaller values of the
true standard deviation the bias is smaller in magnitude. The mean bias goes up to 0.2 for negative values of
the true effect size and as low as −0.2 for positive values of the true effect size. The absolute bias reaches
its maximum for a true mean differences of δ = ±7.98) and standard deviation of σ = 5). The maximum
inflation of the coverage probabilities of one-sided 97.5% and two-sided 95% confidence intervals is 0.7 and
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0.5 percentage points, respectively. The actual coverage probabilities are smallest for large absolute values of
the true mean difference and standard deviations of around 5.

If the sample size reassessment is based on the adjusted variance estimate, the absolute bias of the variance
and mean estimate will be even larger taking values up to 2.49 for the variance and up to 0.25 for the mean,
respectively. The inflation of the coverage probabilities goes up to 0.9 percentage points for the one-sided
confidence intervals and 0.6 percentage points for the two-sided intervals.

4. Restricted sample size rules

Additionally we investigate the effect of blinded sample size reassessment on the coverage probabilities of
conventional t-test confidence intervals, as well as the bias of the estimates of the mean and variance, when
the second stage sample size is limited by a predetermined upper bound. Specifically we compute the second
stage sample size using the rules na2 and nu2 as defined above, setting the maximum second stage sample
size to n2max = 2n1, but leaving the minimum sample size at zero (i.e. n2 min = 0). Because the (blinded)
interim analysis is performed after one half of the preplanned total (per-group) sample size is observed, setting
n2max = 2n1 is equivalent to limiting the second stage sample size to be at most twice its preplanned value.

As in Section 1 we assume that the preplanned sample size of the trial was planned to reach a target power
of 80% (using the normal approximation) assuming an effect size δ0 = 1, standard deviations σ0 between 0.5
and 2 in steps of .5 and a one-sided significance level α = 0.025. The upper bound for the second stage per
group sample size n2max was set to twice the preplanned second stage sample size (i.e. n2max = 2n1). The
simulations were performed in R with 107 simulation runs per scenario. The data used in the final manuscript
version, is distributed with this package and can be loaded with the command data(restsim).

Overall we observe that for σ0 < σ the bias of effect and variance estimates (Figures 19 and 20, respectively)
as well as the difference (in absolute terms) between nominal and actual coverage probabilities (Figures 17
and 18) is substantially reduced. This is not surprising as for σ0 << σ the adjusted second stage sample size
is essentially fixed at n2max resulting in unbiased estimates and correct coverage probabilities. Note, however,
that the corresponding trials will not control the Type II error at the desired level anymore. This can also be
seen as the variance of the mean estimate (Figures 21 and 22) is substantially larger in these cases and does
not decrease for increasing absolute effect sizes, compared to the unrestricted samplesize reassessment rules.

For σ0 ≥ σ we observe that the shape of the bias of estimates and the difference between nominal and actual
coverage probabilities as functions of the true effect size is similar to when unrestricted sample size rules are
applied. While the (absolute) bias of the effect estimate is reduced by about a factor n2max/(n1 +n2max) = 2/3
(following from Theorem 2 in the article) the bias of the variance estimate is comparable in magnitude to
when unrestricted sample size reassessment rules are applied. The effect on the difference between nominal
and actual coverage probabilities is not as clear cut. For σ close to σ0 there appears to be a reduction (to
about 80%) compared to designs without sample size restrictions, for σ < σ0 the magnitude of the differences
is similar.
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Figure 1: Difference between actual and nominal coverage probabilities in percentage points under blinded
sample size reassessment using the *adjusted sample size reassessment rule* na2 : upper confidence bound
(dashed line), lower confidence bound (dotted line) and two-sided interval (solid line). Rows refer to the a
priori assumed standard deviations σ0 determining the first stage sample size n1. The columns correspond to
actual standard deviations. The x-axis in each graph denotes the true treatment effect δ, the y-axis shows
the difference of actual to nominal coverage probability such that negative values indicate settings where the
confidence bound is not valid.
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Figure 2: Difference between actual and nominal coverage probabilities in percentage points under blinded
sample size reassessment using the *unadjusted interim variance estimate* S1,OS : upper confidence bound
(dashed line), lower confidence bound (dotted line) and two-sided interval (solid line). Rows refer to the a
priori assumed standard deviations σ0 determining the first stage sample size n1. The columns correspond to
actual standard deviations. The x-axis in each graph denotes the true treatment effect δ, the y-axis shows
the difference of actual to nominal coverage probability such that negative values indicate settings where the
confidence bound is not valid.
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Figure 3: Bias of the mean under blinded sample size reassessment using the unadjusted (solid line) and
adjusted (dashed line) interim variance estimate. The dotted lines show maximum negative and positive bias
that can be attained under any blinded sample size reassessment rule according to Theorem 2. The dashed
gray line shows the maximum bias that can be attained under any (unblinded) sample size reassessment rule.
The treatment effect used for planning is set to δ0 = 1. Rows refer to the a priori assumed standard deviations
σ0 determining the first stage sample size n1. The columns correspond to actual standard deviations. The
x-axis in each graph denotes the true treatment effect δ, the y-axis shows the bias.
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Figure 4: Bias of the variance under blinded sample size reassessment using the unadjusted (solid line) and
adjusted (dashed line) interim variance estimate. The gray line gives the lower bound from Theorem 4 for
the bias under sample size reassessment based on the unadjusted variance estimate. The treatment effect
used for planning is set to δ0 = 1. Rows refer to the a priori assumed standard deviations σ0 determining the
first stage sample size n1. The columns correspond to actual standard deviations. The x-axis in each graph
denotes the true treatment effect δ, the y-axis shows the bias.
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Figure 5: Adjusted sample size reassessment rule: actual variance of the mean estimate σ2
e (solid line),

average of the estimated variances of the mean S2
e (dashed line), average of the variances σ2

f of the mean of
fixed sample trials with the same sample sizes.
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Figure 6: Variance of the effect estimates (i.e., square of the standard errors) for the unadjusted sample size
reassessment rule: actual variance σ2

e of the mean estimate (solid line), average of the estimated variances
S2
e of the mean (dashed line), average of the variance σ2

f of the mean of corresponding fixed sample trials
(dotted line).
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Figure 7: Maximum absolute bias of the mean estimate for given per group first stage sample sizes n1
between 2 and 50. Left column shows the results for the unadjusted sample size reassessment rule, right
column for the adjusted sample size reassessment rule. The first row shows the value of the bias, the second
the effect size δ and the third the standard deviation σ at which the specific value is attained. The gray line
denotes a Loess smoothed estimate.
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Figure 8: Maximum absolute bias of the variance estimate for given per group first stage sample sizes n1
between 2 and 50. Left column shows the results for the unadjusted sample size reassessment rule, right
column for the adjusted sample size reassessment rule. The first row shows the value of the bias, the second
the effect size δ and the third the standard deviation σ at which the specific value is attained. The gray line
denotes a Loess smoothed estimate.
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Figure 9: Comparison of maximal absolute variance bias for different parameter settings: Solid line - δ = 0,
σ ∈ [.5, 4]; Dashed line - δ ∈ [0, 4], σ = [.5, 4]; transparent red line - theoretical bound.
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Figure 10: Comparison of maximal absolute variance bias for different parameter settings: Solid line - δ = 0,
σ = 50; Dashed line - δ = 0, σ = 4; Dotted line δ = 0, σ ∈ [.5, 4]; transparent red line - theoretical bound.
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Figure 11: Comparison of maximal absolute variance bias for different parameter settings: Solid line - δ = 0,
σ ∈ [.5, 4]; Dashed line - δ ∈ [0, 4], σ = [.5, 4].
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Figure 12: Comparison of maximal absolute variance bias for different parameter settings: Solid line - δ = 0,
σ = 50; Dashed line - δ = 0, σ = 4; Dotted line δ = 0, σ ∈ [.5, 4].
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Figure 13: Maximum absolute bias of the variance estimate for given per group first stage sample sizes n1
between 2 and 50 using fixed values δ = 0 and for the unadjusted reassessment rule also σ = 4. Left column
shows the results for the unadjusted sample size reassessment rule, right column for the adjusted sample
size reassessment rule. The first row shows the value of the bias, the second the effect size δ and the third
the standard deviation σ at which the specific value is attained. The gray line denotes a Loess smoothed
estimate.
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Figure 14: Maximum (absolute) difference between actual and nominal coverage probabilities for a given per
group first stage sample sizes n1 between 2 and 50. Left column shows the results for the unadjusted sample
size reassessment rule, right column for the adjusted sample size reassessment rule. The first row shows the
difference between actual and nominal coverage probabilities, the second the effect size δ and the third the
standard deviation σ at which the specific value is attained. The gray line denotes a Loess smoothed estimate.
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Figure 15: Maximum Type I error rate inflation of the t-test following blinded sample size reassessment
based on blinded interim data for given per group first stage sample sizes n1 between 2 and 50. Left column
shows the results for the unadjusted sample size reassessment rule, right column for the adjusted sample size
reassessment rule. The first row shows the difference between actual and nominal coverage probabilities, the
second the effect size δ and the third the standard deviation σ at which the specific value is attained. The
gray line denotes a Loess smoothed estimate.
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Figure 16: Coverage probabilities and bias of mean and variance estimates for the case study. The first
panels shows actual - nominal coverage probabilities (AC-NC) for the 97.5% upper (dashed line), lower
(dotted line) and the 95% two-sided confidence intervals, for the unadjusted reassessment rule nu2 . The second
panel shows the bias of the mean estimate if nu2 (solid line) or na2 (dashed line) is used. The dotted line
shows upper and lower bounds for the bias for general blinded sample size reassessment rules based on S2

1,OS .
The dashed gray line shows the bounds for the bias that can be attaind with a general unblinded sample
size reassessment rule. The third panel shows the bias of the variance estimate if either nu2 (solid line) or na2
(dashed line) is used. The red line shows the theoretical boundary for the bias give in Theorem 4.
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Figure 17: Difference between actual and nominal coverage probabilities in percentage points under blinded
sample size reassessment using the *adjusted sample size reassessment rule* na2 with a maximal second stage
sample size limited to 2n1: upper confidence bound (dashed line), lower confidence bound (dotted line) and
two-sided interval (solid line). Rows refer to the a priori assumed standard deviations σ0 determining the
first stage sample size n1. The columns correspond to actual standard deviations. The x-axis in each graph
denotes the true treatment effect δ, the y-axis shows the difference of actual to nominal coverage probability
such that negative values indicate settings where the confidence bound is not valid.
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Figure 18: Difference between actual and nominal coverage probabilities in percentage points under blinded
sample size reassessment using the *unadjusted interim variance estimate* S1,OS with a maximal second
stage sample size limited to 2n1: upper confidence bound (dashed line), lower confidence bound (dotted line)
and two-sided interval (solid line). Rows refer to the a priori assumed standard deviations σ0 determining the
first stage sample size n1. The columns correspond to actual standard deviations. The x-axis in each graph
denotes the true treatment effect δ, the y-axis shows the difference of actual to nominal coverage probability
such that negative values indicate settings where the confidence bound is not valid.
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Figure 19: Bias of the mean under blinded sample size reassessment with a maximal second stage sample size
limited to 2n1 using the unadjusted (solid line) and adjusted (dashed line) interim variance estimate. The
dotted lines show maximum negative and positive bias that according to Theorem 2 can be attained under any
blinded sample size reassessment rule with a maximal second stage sample size limited to 2n1. The dashed
gray line shows the maximum bias that can be attained under any (unblinded) sample size reassessment rule
with a maximal second stage sample size limited to 2n1. The treatment effect used for planning is set to
δ0 = 1. Rows refer to the a priori assumed standard deviations σ0 determining the first stage sample size n1.
The columns correspond to actual standard deviations. The x-axis in each graph denotes the true treatment
effect δ, the y-axis shows the bias.

25



σ = 0.5 σ = 1 σ = 1.5 σ = 2

−0.075

−0.050

−0.025

0.000

−0.075

−0.050

−0.025

0.000

−0.075

−0.050

−0.025

0.000

σ
0  =

 1, n
1  =

 8
σ

0  =
 1.5, n

1  =
 18

σ
0  =

 2, n
1  =

 32

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4
δ

B
ia

s 
of

 th
e 

va
ria

nc
e

Figure 20: Bias of the variance under blinded sample size reassessment with a maximal second stage sample
size limited to 2n1 using the unadjusted (solid line) and adjusted (dashed line) interim variance estimate.
The gray line gives the lower bound from Theorem 4 for the bias under sample size reassessment based on
the unadjusted variance estimate. The treatment effect used for planning is set to δ0 = 1. Rows refer to the a
priori assumed standard deviations σ0 determining the first stage sample size n1. The columns correspond to
actual standard deviations. The x-axis in each graph denotes the true treatment effect δ, the y-axis shows
the bias.
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Figure 21: Adjusted sample size reassessment rule with a maximal second stage sample size limited to
2n1: actual variance of the mean estimate σ2

e (solid line), average of the estimated variances of the mean S2
e

(dashed line), average of the variances σ2
f of the mean of fixed sample trials with the same sample sizes.
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Figure 22: Variance of the effect estimates (i.e., square of the standard errors) for the unadjusted sample
size reassessment rule with a maximal second stage sample size limited to 2n1: actual variance σ2

e of the
mean estimate (solid line), average of the estimated variances S2

e of the mean (dashed line), average of the
variance σ2

f of the mean of corresponding fixed sample trials (dotted line).
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